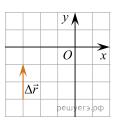
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Чтобы измерить силу, необходимо воспользоваться прибором, который называется:

1) вольтметр


2) барометр

3) штангенциркуль

4) часы

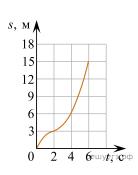
5) динамометр

2. Материальная точка совершила перемещение $\Delta \vec{r}$ в плоскости рисунка (см. рис.). Для проекций этого перемещения на оси Ox и Oy справедливы соотношения, указанные под номером:

1)
$$\Delta r_x > 0$$
, $\Delta r_y > 0$ 2) $\Delta r_x > 0$, $\Delta r_y < 0$ 3) $\Delta r_x < 0$, $\Delta r_y < 0$ 4) $\Delta r_x = 0$, $\Delta r_y < 0$ 5) $\Delta r_x = 0$, $\Delta r_y > 0$

- **3.** Голубь пролетел путь из пункта A в пункт B, а затем вернулся обратно, двигаясь с одной и той же скоростью относительно воздуха. При попутном ветре, скорость которого была постоянной, путь AB голубь пролетел за промежуток времени $\Delta t_1 = 24$ мин, а путь BA при встречном ветре за промежуток времени $\Delta t_2 = 40$ мин.
 - В безветренную погоду путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

1) 28 мин

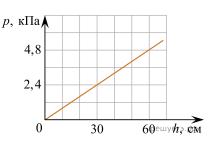

2) 30 мин

3) 34 мин

4) 36 мин

5) 38 мин

4. На рисунке приведен график зависимости пути s, пройденного телом при равноускоренном прямолинейном движении от времени t. Если от момента начала до отсчёта времени тело прошло путь s=6 м, то модуль перемещения Δr , за которое тело при этом совершило, равен:



1) 12 m 2) 9 m 3) 6 m 4) 3 m 5) 0 m

5. Два тела массами m_1 и $m_2=4m_1$ двигались по гладкой горизонтальной плоскости со скоростями, модули которых $\upsilon_1=4,0\frac{\mathrm{M}}{\mathrm{C}}$ и $\upsilon_2=2,0\frac{\mathrm{M}}{\mathrm{C}}$. Если после столкновения тела продолжили движение как единое целое, то модуль максимально возможной скорости υ тел непосредственно после столкновения равен:

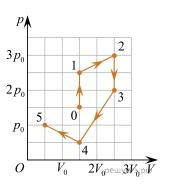
1)
$$2,4\frac{M}{c}$$
 2) $3,0\frac{M}{c}$ 3) $4,0\frac{M}{c}$ 4) $5,4\frac{M}{c}$ 5) $6,0\frac{M}{c}$

6. На рисунке изображён график зависимости гидростатического давления p от глубины h для жидкости, плотность ρ которой

1)
$$1,2$$
 $\frac{\Gamma}{\text{cm}^3}$ 2) $1,1$ $\frac{\Gamma}{\text{cm}^3}$ 3) $1,0$ $\frac{\Gamma}{\text{cm}^3}$ 4) $0,90$ $\frac{\Gamma}{\text{cm}^3}$ 5) $0,80$ $\frac{\Gamma}{\text{cm}^3}$

7. В Международной системе единиц (СИ) удельная теплота сгорания топлива измеряется в:

1)
$$\frac{\mathcal{J}\mathcal{K}}{\mathsf{K}\Gamma\cdot\mathsf{K}}$$
 2) $\frac{\mathcal{J}\mathcal{K}}{\mathsf{K}\Gamma}$ 3) $\frac{\mathcal{J}\mathcal{K}}{\mathsf{K}}$ 4) $\mathcal{J}\mathcal{K}$ 5) K


8. Если концентрация молекул идеального газа $n = 2.0 \cdot 10^{25} \,\mathrm{m}^{-3}$, а средняя кинетическая энергия поступательного движения молекул газа $\langle E_{\kappa} \rangle = 3.0 \cdot 10^{-21}$ Дж, то давление p газа равно:

45 κΠα

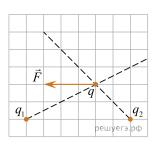
2) 40 кПа 3) 20 кПа

4) 15 κΠa

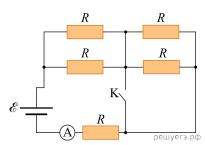
9. На p - V диаграмме изображён процесс $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, проведённый с одним молем газа. Положительную работу A газ совершил на **участке**:

1) $0 \rightarrow 1$ 2) $1 \rightarrow 2$

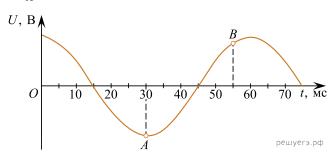
10. Единицей индуктивности в СИ является:

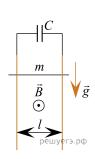

1) 1 Гн 2) 1 A 3) 1 Φ 4) 1 B 5) 1 O_M

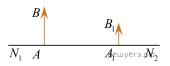
- **11.** Лифт начал опускаться с ускорением, модуль которого a = 1,2 м/с². Когда модуль скорости движения достиг V = 2.0 м/с, с потолка кабины лифта оторвался болт. Если высота кабины h = 2.4 м, то модуль перемещения Δr болта относительно поверхности Земли за время его движения в лифте равен ... дм. Ответ округлите до целых.
- 12. Телу, находящемуся на гладкой наклонной плоскости, образующей угол $\alpha = 60^{\circ}$ с горизонтом, ударом сообщили начальную скорость, направленную вверх вдоль плоскости. Если время, через которое тело вернётся в начальное положение, t = 3.7 с, то чему равен модуль начальной скорости тела равен? Ответ приведите в метрах в секунду.
- 13. На дне вертикального цилиндрического сосуда, радиус основания которого R = 10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=145 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B}$ = 1,00 г/ cm^3), равный ... cm^3 .
- **14.** Два тела массами $m_1 = 4{,}00$ кг и $m_2 = 3{,}00$ кг, модули скоростей которых одинаковы ($\upsilon_1 = \upsilon_2$), двигались по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой u = 10.0 м/c, то количество теплоты O, выделившееся при столкновении, равно ... Дж.

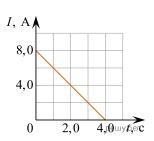

- **15.** В баллоне находится идеальный газ массой $m_1 = 3$ кг. После того как из баллона выпустили m = 0.75 кг газа и понизили абсолютную температуру оставшегося газа до $T_2 = 340$ K, давление газа в баллоне уменьшилось на $\alpha = 40.0$ %. Модуль изменения абсолютной температуры $| \Delta T |$ газа в баллоне равен ... **K**
- **16.** Значения плотности $\rho_{\rm H}$ насыщенного водяного пара при различных температурах t представлены в таблице. Если в одном кубическом метре комнатного воздуха при температуре $t_0 = 24$ °C содержится m = 12 г водяного пара, то чему равна относительная влажность ϕ воздуха в комнате? Ответ приведите в процентах.

t, °C	21	22	23	24	25
$\rho_{\rm H}, \Gamma/{ m M}^3$	18,3	19,4	20,6	21,8	23,0


- 17. При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_1 = 1,60$ кДж. При последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении. Если конечная температура газа $T_2 = 454$ K, то его начальная температура T_1 была равна ... **К**.
- **18.** На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд $q_1 = -48$ нКл, то заряд q_2 равен ...нКл.


- **19.** Зависимость силы тока I в нихромовом $\left(c = 460 \frac{\text{Дж}}{\text{K}\Gamma \cdot \text{K}}\right)$ проводнике, масса которого m = 30 г и сопротивление R = 1,0 Ом, от времени t имеет вид $I = B\sqrt{Dt}$, где B = 0,1 А, D = 2,5 с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t = 2,0$ мин после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.
- **20.** В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если до замыкания ключа K идеальный амперметр показывает силу тока $I_1=18$ мA, то после замыкания ключа K амперметр показывал силу тока I_2 равную ... мA.


21. Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}=30$ мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}=55$ мс равно $U_{\rm B}$. Если разность напряжений $U_{\rm B}-U_{\rm A}=79$ В, то действующее значение напряжения $U_{\rm A}$ равно ... **B**.


22. В однородном магнитном поле, модуль индукции которого B=0.25 Тл, находятся два длинных вертикальных проводника, расположенные в плоскости, перпендикулярной линиям индукции (см. рис.). Расстояние между проводниками l=12.0 см. Проводники в верхней части подключены к конденсатору, ёмкость которого C=1 Ф. По проводникам начинает скользить без трения и без нарушения контакта горизонтальный проводящий стержень массой m=4.2 г. Если электрическое сопротивление всех проводников пренебрежимо мало, то через промежуток времени $\Delta t=0.34$ с после начала движения стержня заряд q конденсатора будет равен ... мКл.

23. Стрелка AB высотой H=4,0 см и её изображение A_1B_1 высотой h=2,0 см, формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=16$ см, то модуль фокусного расстояния |F| линзы равен ... см.

- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $^{133}_{54}$ Xe. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5~{\rm cyr.},~{\rm то}$ $\Delta N=90000$ ядер $^{133}_{54}$ Xe распадётся за промежуток времени Δt , равный ... cyr.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого $r=0,50~{\rm Om},$ и резистора сопротивлением $R=10~{\rm Om}.$ Если сила тока в цепи $I=2,0~{\rm A},$ то ЭДС $\mathcal E$ источника тока равна ... В.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\text{M}}{\text{c}}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью $L=1{,}03$ Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд C=100 конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2},$ то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.